燃料

Last-modified: 2023-08-08 (火) 06:31:00

燃料とは、燃やすことで熱エネルギーを得られるアイテムである。

アイテム

アイコン名称熱量1スタック
(合計熱量)
車両加速力車両最高速
32px-wood.png木材
(Raw wood)
2 MJ100個
(200 MJ)
--
32px-coal.png石炭
(Coal)
4 MJ50個
(200 MJ)
--
32px-solid-fuel.png固形燃料
(Solid fuel)
12 MJ50個
(600 MJ)
120%105%
32px-rocket-fuel.pngロケット燃料
(Rocket fuel)
100 MJ10個
(1.00  GJ)
180%115%
32px-nuclear-fuel.png核燃料
(Nuclear fuel)
1.21  GJ
*1
1個
(1.21  GJ)
250%115%

固形燃料・ロケット燃料・核燃料は車両の燃料として使う場合、車両の加速力や最高速度が向上する(※加速力+20%~+150%、最高速度+5%~+15%)。
注意:完全に数値通りの最高速度を得るのは列車だけ。他の車両は摩擦力の関係で、実ボーナスは数値通りにならない。

※核燃料16px-nuclear-fuel.pngと燃料棒16px-uranium-fuel-cell.png(熱量8 GJ)は全く別のアイテムなので間違えないように注意。
核燃料は原子炉では使用不可、燃料棒は原子炉でのみ使用可能。→原子力ネットワーク

燃料と熱量

燃料は、その種類に応じた熱量を持つ。
更に、燃料を使用する施設は、その消費熱量が定められている。
この2つから、以下の計算式で燃料1個当たりの施設稼働時間を求めることができる。

施設稼働時間(秒) = 燃料の熱量(J) / 施設の消費熱量 (W)

例えば、石の炉(Stone furnace)の稼働時の消費熱量は 90 kW である。
その石の炉に石炭(4 MJ)を1つくべると、4000 kJ / 90 kW = 44.4秒の間稼働させることが可能となる。
木材(2 MJ)であればその半分の稼働時間である。

なお、施設に燃料を投入すると、UIの燃料スロットの右に赤いバーが出てくる。
これは燃料ゲージであり、消費途中の燃料の残り熱量を示している。
あまり気にする必要は無いが、施設を撤去するとこの燃料ゲージ分の熱量は消滅する

燃料の使用

電力への変換

アイコン名称消費熱量汚染度備考
32px-boiler.pngボイラー
(Boiler)
1.8 MW30汚染度は 1 kW当たり0.0167(30/1800)

燃料はボイラーを経由することで電力へと変換できる。
詳細は電気ネットワークを参照。

鉱石の製錬

アイコン名称消費電力・燃料量製作速度汚染度サイズ
32px-stone-furnace.png石の炉
(Stone furnace)
燃料  90 kW122×2
32px-steel-furnace.png鋼鉄の炉
(Steel furnace)
燃料  90 kW242×2
32px-electric-furnace.png電気炉
(Electric furnace)
電力 180 kW213×3

製錬用の炉の内、石の炉と鋼鉄の炉は燃料を投入することで動作する。
一方、電気炉は名前の通り電気で動くので、燃料は不要。
詳細は製造ネットワークを参照。

固形燃料

石油精製の過程で固形燃料製造が可能になる。
原料(重油/軽油/石油ガス)の違いは固形燃料の性能には影響しない。
一方、変換効率には違いがある。

材料製造ルート固形燃料1個に
必要な材料数
重油重油→固形燃料20.0
重油→軽油→固形燃料13.3
重油→軽油→石油ガス→固形燃料40.0
軽油軽油→固形燃料10.0
軽油→石油ガス→固形燃料30.0
石油ガス石油ガス→固形燃料20.0

上表の通り、重油は軽油に変換してから固形燃料を作ると最も効率よく変換できる。
石油ガスの固形燃料化は特に効率が悪い。そもそも石油ガスは他で大量に使うため、固形燃料へ変換するべきでない。

石炭の液化からの固形燃料化

研究「石炭の液化」を済ませると、石炭から重油・軽油・石油ガスを生産できるようになる。

石炭の液化からの固形燃料化の計算「熱量が約2倍」
  • 石炭の液化
    • 消費:石炭10個、重油25、蒸気50(ボイラーから1.5MJ(石炭3/8個)分で蒸気50生産)
      生産:重油90(差引65)、軽油20、石油ガス10
      石炭10個(40MJ分)から固形燃料(1個12MJ)を生産する場合。
  1. 重油を3/4で軽油へ変換して軽油48.75、生産軽油と合わせ68.75
  2. 軽油68.75→固形燃料は6.875個(82.5MJ分)
  3. 石油ガス10→固形燃料0.5個
    • 石炭10個(40MJ分)から固形燃料7.375個分(88.5MJ分)に変換できる。
      蒸気分(1.5MJ)+変換処理の消費電力6.076MJ*2などを考慮しても2倍を上回る計算
      ※石油ガスは効率が悪く熱量が少ない&他で必要になるため、他へ回してしまってもいいだろう。

結論を言えば「液化が可能になったら燃料用の石炭は全て液化して固形燃料にした方が効率が良い
ただし石炭は他でも必要、かつ有限の資源であるため必要以上の液化はしないように。

 

燃料としてのロケット燃料

ロケット関係のテクノロジーで「ロケット燃料」の研究を済ませると、固形燃料10個+軽油10からロケット燃料を製造できる。
ロケット燃料は本来ロケット部品の中間生産アイテムだが、通常の燃料としても利用できる。

炉やボイラーに使う場合、以下の通り固形燃料のまま使う方がエネルギー効率が良い。

  • 固形燃料: 軽油 110 → 固形燃料 11 (121 MJ)
  • ロケット燃料: 軽油 110 → 固形燃料 10 + 軽油10 → ロケット燃料 1 (100 MJ)

そのため、輸送・貯蔵するアイテム数を圧縮できるとは言え、固形燃料の方が適正が高い。

 

一方、車両に使う場合、最高速度・加速度にボーナスが乗るので、高い適正を持つ。
単純に移動時間を短縮できるのみならず、燃費も良くなる *3
具体的には、移動時間は2割前後の短縮、燃費は2~3割の向上が期待できる*4
劇的な違いではないものの積極的に変換するだけの効果は期待できる。

また、ロケット燃料から生産できる最上位の燃料(核燃料)については、原子力ネットワークを参照。

熱量当たりのスタックの圧縮

固形燃料2スタック100個(+10個分の軽油)をロケット燃料1スタック10個へ変換できるため、
熱量当たりの体積を減らし、同じ容量により多くの熱量を収納できる。
大量に確保して有り余っている状況なら熱量のロスも気にせず全てロケット燃料にしてしまう手もある。

モジュールの活用

モジュールを活用することで多少効率的に燃料を生産できる
ただし生産力モジュールは「生産性と引き換えが膨大なコストである」ため不向き
熱量比で一番効率化できるのは「組立機3へエネルギー効率化モジュール3x3枚+生産速度モジュール3x1枚」

モジュール計算

単純に生産力モジュール3x4枚だと熱量+40%の代わりに電力消費+320%・生産速度-60%
固形燃料10個120MJ+α → ロケット燃料1.4個140MJ分とアイテム上は増えているが
※電力消費約1.58MW×製作時間(30/1.25/0.4)60秒、合計約94.8MJ/個と完全にマイナス収支。
 大規模ソーラーで"使えていない電力が過剰にある"ならその使い道の1つにできる程度
 油が無限資源であることを考えれば、ここまで無理をする必要性が無い
速度ビーコンを使えばごまかせるような気もするが、ビーコンの消費電力の分で効果は薄い。

 

より熱量の効率化ができるのはエネルギー効率モジュールと生産速度モジュールの組み合わせ。
効率1x3枚のみで熱量変化なし、電気消費上限-80%と比較すると
 100MJを(87.5kW*30/1.25)=2.1MJで生産でき、1MJ当たり21kJ
効率3x3枚+生産力3x1枚だと熱量+10%,電気消費-70%,速度-15%、
 110MJを(125.5kW*30/1.0625)=3.54MJ消費で生産、1MJ当たり32kJ
効率3x3枚+生産力2x1枚で熱量+6%,電気消費-80%,速度-15%
 106MJを(87.5kW*30/1.0625)=2.47MJ消費で生産、1MJ当たり23kJ
効率3x3枚+速度3x1枚で熱量変化なし,電気消費-80%,速度+50%
 100MJを(87.5kW*30/1.875)=1.4MJで生産でき、1MJ当たり14kJ
どう組み合わせても・どう計算しても、エネルギー効率化モジュール3x3枚+生産速度モジュール3x1枚が最も効果的と言える。


*1 元ネタ: 映画「バックトゥザフューチャー」でタイムマシンに使用する核燃料が生み出す電力が1.21 GWである。
*2 原油処理施設の消費434kW*5s=2.17MJ・重油-軽油変換217kW*2s*1.625回=0.705MJ・固形燃料化217kW*2s*7.375回=3.2MJ
*3 時間あたりの燃料消費量は速度の影響を受けないので、高速なほど距離あたりの燃料消費量が減る。
*4 同じ熱量での移動距離は約1.5倍、熱量比が0.8倍なので、効率は1.25倍前後になる。ただし鉄道は信号等に多少左右される。