Top > soft semiregular
HTML convert time to 0.002 sec.

soft semiregular

Last-modified: 2012-04-04 (水) 21:35:28

Definition Edit

A soft topological space (X, τ, E) is said to be a soft seminormal if for every soft point (K, E) and soft semiclosed set (F, E) not containing (K, E), there exist two disjoint soft semiopen sets (H, E_1), (H, E_2) such that imgtex.fcgi?%5bres=100%5d%7b%5c%5b%20%28K%2c%20E%29%5c%2c%5cwidetilde%7b%5cin%7d%5c%2c%28H%2cE_1%29%5cmbox%7b%20and%20%7d%28F%2c%20E%29%5c%2c%5cwidetilde%7b%5csubseteq%7d%5c%2c%28H%2c%20E_2%29%20%5c%5d%7d%25.png.

Reference Edit

  • J. Mahanta, P. K. Das ,On soft topological space via semiopen and semiclosed soft sets, arXiv math.GN 1203.4133v1.