Top > strongly Hausdorff
HTML convert time to 0.003 sec.

strongly Hausdorff

Last-modified: 2012-09-17 (月) 16:58:37

Definition Edit

  • A Hausdorff space (X, τ) is said to be a strongly Hausdorff space if for each infinite subset A ⊆ X, there is a sequence { U_n : n∈N } of pairwise disjoint open sets such that imgtex.fcgi?%5bres=100%5d%7b%5c%5b%20A%5ccap%20U_n%5cneq%5cemptyset%20%5c%5d%7d%25.png

Property Edit

Reference Edit

  1. Porter J. R., Strongly Hausdorff spaces. Acta Math. Acad. Sci. Hungar. 25 (1974), 245–248.
  2. Dorsett Charles, Strongly R1 spaces., Kyungpook Math. J. 21 (1981), no. 2, 155–161.