Top > core compact
HTML convert time to 0.002 sec.

core compact

Last-modified: 2010-09-02 (木) 01:33:05

Definition Edit

  • A topological space X is called core compact if every open neighbourhood V of a point x of X contains an open neighbourhood U of x with the property that every open cover of V has a finite subcover of U.

Remark Edit

  • For Hausdorff spaces, core compactness coincides with local compactness.

Reference Edit

  • Escardo, Martín , Lawson, Jimmie and Simpson, Alex, Comparing Cartesian closed categories of (core) compactly generated spaces.[J] Topology Appl. 143, No. 1-3, 105-145 (2004).